

Effectively addressing climate risk through adaptation for the Energy Gulf Coast

Brent Dorsey Entergy, Environmental Strategy & Policy

The Atlantic Council – Washington, DC Climate Change and Extreme Weather Vulnerability Assessment of the US Energy Sector: Building a Secure and Sustainable Energy Future July 24 – 25

- Regardless of Climate, significant risks exist for the Gulf Coast
- Entergy and America's Wetlands Foundation joint sponsorship of adaptation analysis
- Leverage McKinsey/Swiss Re analysis
- Provide decision makers with the appropriate fact base and framework to identify risks and adaptive strategies
- Focus on Gulf of Mexico "Energy Coast"

Adaption Follow Through . . . Actions ETR is Taking

America's Wetland Foundation

- Joint Sponsorship with America's Wetland Foundation
- Study released at World Deltas 2010 Dialogue
- Blue Ribbon Resilient Communities Program
 - Launched Feb, 2011 concluded May, 2012
 - Eleven locally focused meetings in the four state analysis area

Entergy Asset Resiliency

- Internal Evaluations of Critical Infrastructure
- Focus on T&D, Generation and Vegetation Management
- Expand to include other affected utilities

Legislative and Regulatory

- Leverage work with Federal Efforts
 - Adaptation more focused regionally than "Cap & Trade"
 - Intersection of Oil Spill Fund
 - Incorporate with Energy/Environmental Policy

Methodology uses asset, hazard, and vulnerability modules to determine expected annual losses due to climate-related events

A detailed asset baseline is developed ground up

- Over 23 asset classes assess across 800 zip codes
- Baseline is then grown to 2030 using industry projections
- Over 15,000 rows of data for each year's projection (over 100,000 rows total)

Sample asset data sheet

	A.	3	C	0	£	F	G	H.
10088 <i>D</i> g		State	Group	Cat1	Coverage	Asset (USD)		
10089	72043	1	LA 08G	refeeres	Property Damage	3319076790		
10090	70043	1	A 08G	Refnery and Petrochemical Flast	Business Interrupt	56,517,423		
10091	70043	1	LA 08G	Refnery and Petrochemical Plant	Business Interrupt	279,836,010		
10092	70043		LA Communici	Mixed Commercial	Business Interrupt	258,954,895		
10093	73043	1	A Agriculture	General Agricultural	Business Interrupt	4,657,580		
10094	70043		A Non-energ	Large Industrial	Business Interrupt	93.355,437		
10095	72043	1	A Non-energy	Small Industrial	Business Interrupt	53.182,507		
10096	73044		A Utilities	Peakers generation	Property Damage	4,060,891		
10097	73047	1	A Residentia	Single Family Housing	Property Damage	1.222.270.712		
10098	72047	1	A Residentia	Muth Family - Low Rise (1-3 story)	Preperty Damage	83 375.211		
10099	72047	1	LA Commerce	Moved Commercial	Property Damage	297,480,931		
10100	73047		A Agricultura	General Agricultural	Property Damage	2 823,280		
10101	73047	- 21	A Non-energ	Large Industrial	Preperty Damage	5 0 14,330		
10102	73047	34	A Non-energ	Small Industrial	Preperty Carsage	21 791,031		
10103	73047	1	A Infrastruct	Transportation Services	Preperty Damage	25 650.347		
10104	73047		A Infrastruct	Bridges	Property Damage	1,145,355,940		
10105	73047		A Infrastruct	Utilities	Property Damage	65 894,391		
10105	73047	1	A Utöties	Distribution lines	Property Camage	123 388 991		
10107	73047	1.1	A Utilities	Transmission lines	Property Damage	38 965.000		
10108	73047		A 080	onshore pipeline NG	Property Damage	5160753.607		
10109	73047	1	LA 080	prishare pipeline NG	Property Damage	5162318.508		
10130	72047		LA Commerci	Mixed Commercial	Business Interrupt	213,607,194		
10111	79047	1	LA Agricultura	General Agricultural	Business Interrupt	1,486,284		
10112	70047	1	A Non-energ	Large Industrial	Business Interrupt	4,762,973		
	2010	12030		Toronto da ante	A contractor	10.110.000		-

Hazard is assessed and scenarios are created

- Used 27 IPCC Global Climate Models (GCMs), to construct 2030, 2050, and 2100 scenarios
- Based on historical events, 10,000+ hurricane simulations generated

Illustrative generation of hurricane paths/intensities

Hazard is assessed and scenarios are created

 Swiss Re uses their proprietary vulnerability curves to assess the impact of these events for each asset class in each zip code and to turn these into loss curves

Loss frequency curves for hazard scenarios

Gulf Coast suffers from a number of climate and nonclimate related hazards

Hazards	Brief overview	Effect
Wind related damac	Damage can occur across the Gulf Coast region and in areas further inland	Potential increase in wind speed of 1.4-2.9% in 2030 due to warmer sea surface temperatures
Global sea level rise (gradual)	Global impact resulting from ice melt and flow that raises sea level across oceans and impacts the Gulf	Relative sea level may rise by 5-6 inches in 2030 (2.5 - 5 feet by 2100) ¹
Coastal flooding	Risk is along the coastline, linked to hurricane events	 Storms can increase the impact of even modest levels of sea level rise Could lead to more frequent/severe flooding of coastal zones
Gulf Coast subsidence	Falling shoreline due to absence of replenishing sediment in wetlands and ground depression due to heavy extraction	 Unrelated to climate change Local and most intense in Southern LA Most intense areas:5 inches by 2030, 10 by 2050, 22 by 2100

1 Based on Vermeer and Rahmstorf. "Global sea level linked to global temperature." 2009.

Source: National Hurricane Center, NOAA, American Geophysical Union (AGU), Union of Concerned Scientists (UCS); IPCC AR4; Vemeer and Rahmsorf

The Gulf Coast is robust economic engine that will be impacted by these events with growing severity

Key areas examined within 70 miles of the coast

US Gulf Coast region and counties in scope¹

¹ Includes 30 Louisiana parishes

Source: ESRI; Energy Velocity

However, regardless of climate change, the Gulf Coast faces increase in risks from natural hazards

Furthermore, even in the near term, loss from extreme event "tail risks" may increase and occur more often

Among economic sectors, oil and gas assets are particularly vulnerable

Potentially attractive measures can address the increase in annual loss between today and 2030 and keep the risk profile of the region constant

Cost beneficial utility measures can address \$830 million of loss in 2030

Electric utility measures

- Resilient distribution lines (both new builds and retrofits) are key actions
- Vegetation management has potential to reduce losses at C/B < 1
- Transmission resilience efforts tend to be attractive only in high risk areas

Note: HP refers to High Priority areas (zip codes with high average losses); LP refers to Low Priority areas (zip codes low average losses) ¹ Benefits include utility property damage + utility business interruption + commercial and non-energy industrial business interruption aversion *Source: Swiss Re; team analysis*

Key messages from adaptation work

- 1 The Gulf Coast is vulnerable to growing environmental risks today with >\$350 billion of cumulative expected losses by 2030
- 2 Key uncertainties to address this vulnerability include (1) the impact of climate change, (2) the cost and effectiveness of measures to mitigate and adapt and (3) the ability to gain alignment and overcome obstacles moving forward
- 3 Driving a "practical" solution that takes Gulf Coast "resilience" to the next level represents an optimal solution to balance the cost requirements with the risks that impact the Gulf Coast

Brent Dorsey Entergy Corp. bdorsey@entergy.com (281) 297-3321