

SHALE HYDRAULIC FRACTURING DRILLING, CASING AND CEMENTING CHALLENGES & TECHNOLOGIES

Presenter:	Dr C.A. Green
Company:	Atlantic Council
Date:	11 th March 2013
Place:	Bucharest

SHALE DEVELOPMENT - SUMMARY

- All shale reservoirs are NOT the same
- Shales must be fractured to produce commercially
- Hydraulic fracturing creates an artificial fractured reservoir (Stimulated Reservoir Volume)
- Enabling technologies:
 - 1. Multistage hydraulic fracturing
 - 2. Horizontal wells
- Hydraulic fracturing effectiveness determines:
 - 1. Production rates
 - 2. Drainage area
 - 3. Recovery

SHALE DEVELOPMENT - ISSUES

PROBLEMS:

UNCON's are expensive to develop:

- Minimise drilling costs
- Optimise completion & fracturing designs
- Minimise environmental impacts

SOLUTIONS:

- Completion design and drilling practices
- Hydraulic fracturing operations
- Environmental developments

PRESENT RISK

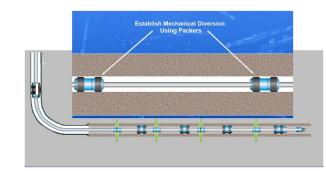
Hydraulic Fracturing Risk:

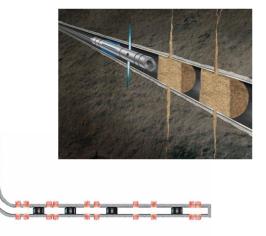
- Fluid Contamination: chemical additives and known carcinogens
- Formation Fluids: Heavy metals, NORM (naturally occurring radioactive materials) and toxic minerals.
- Blowouts/uncontrolled release of hydrocarbons
- Surface spills and contamination

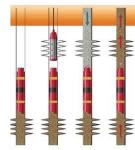
Risk Management Considerations:

Mitigation is by the use and application of best practices including standards for:

- 1. Drilling and completion design
- 2. Cementing
- 3. Well integrity maintenance
- 4. Pre- and Post-drill testing
- 5. On-going well integrity monitoring and audits
- 6. Site preparation and isolation
- 7. Handling of stimulation fluid and wastewaters


FRAC DESIGN OVERVIEW


Clearly define the frac completion objectives **FIRST**:


- 1. Vertical/Horizontal well (HW) and Completion Type
- 2. Frac Design:
 - 1. Frac Fluid: What will be used and why?
 - 2. **Proppant**: Will the proppant retain strength and conductivity over the long term?
 - 3. Rates: High friction less net pressure
- 3. Flow-Back/Clean-up
- 4. Well Spacing

DESIGN – COMPLETIONS

COMPLETION:

- Open Hole or Cased/Cemented Hole
- More stages & smaller treatments, or less Stages & Larger Treatments?
- Multi-Stage Completion Isolation Techniques
- Interventions
- Production techniques
- Maximum lateral length that can be placed into the formation and effectively cleaned-up?

DEVELOPMENT – FRAC DIAGNOSTICS

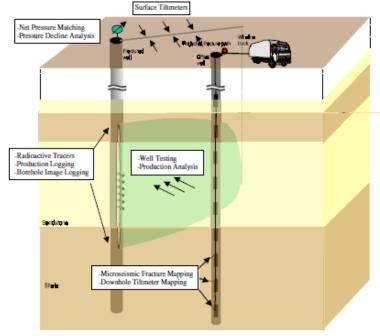
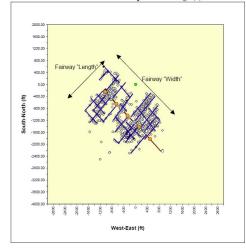
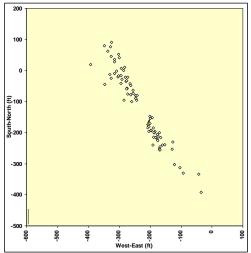


Figure 1 – Fracture Diagnostic Techiques

					-				
	Techniques`	Azimuth	<u>Height</u>	Length	Asymmetry	Width	Dip	Range	
ſ	Microseismic	•	•	•	0		0	Far Field	
	Tiltmeters (downhole)	0	•	•	0	0		Far Field	
	Tiltmeters (surface)	•	0	0	0		•	Far Field	
	RA Tracer	0	0		t	0		Near well	
	Temp Logs		0	di	rect diagnostic	5		Near well	
	Frac Models		0	0		0		Far Field	
	Well Testing			0	+	0		Far Field	
	Production Analysis			0 <i>in</i>	direct diagnost	, 0		Far Field	
	Can determine May determine								


Table 1 – Capabilities & Limitation of Fracture Diagnostics

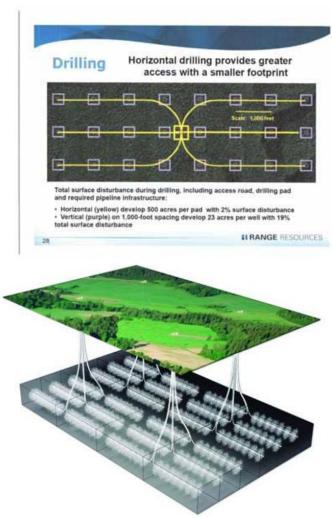

(SPE 64434, Cipolla and Wright, 2000)

Frac diagnostics should be considered in an holistic approach The recommendation depends on the shale and what is required?

DEVELOPMENT – FRAC DESIGN

Single planar frac

- Limited surface area
- Flow through a small channel


Complex (shear) fracture network

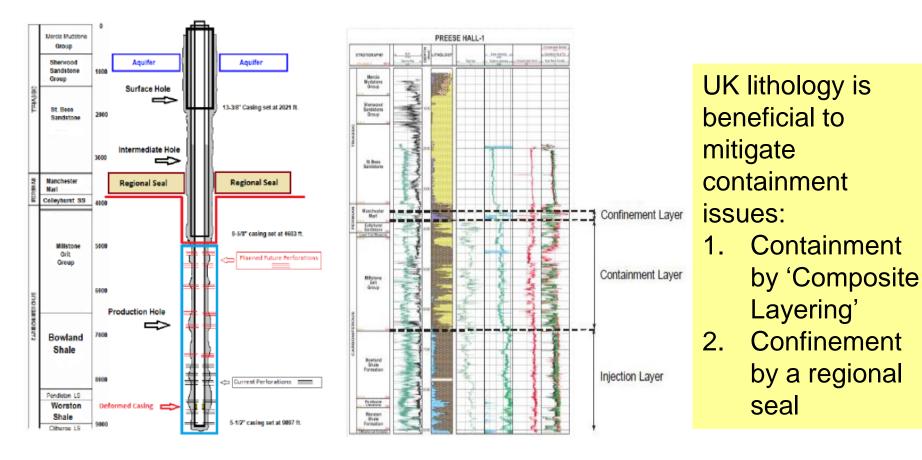
- Large surface área exposed
- May not connect and drain entire network (load recovery experience)

(SPE 90051, Fisher et al, 2004)

DEVELOPMENT – SPACING

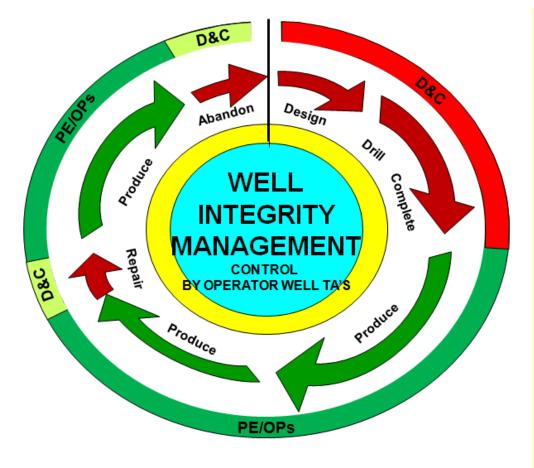
(Source 3Legs factsheet)

Centralised pads:


- 10+ wells from a single pad
- Shared drilling facilities
- Gas processing prior to export
- Minimised environmental impact
- Centralised controlled fluid processing

Environmental and operational optimisation by centralised dewatering

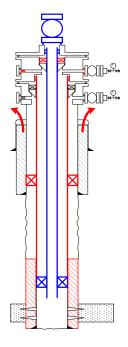
- Recycle processed water
- Centralised disposal point where suspended solids are removed.


MITIGATING RISK – LITHOLOGY

(Source de Pater and Baisch Cuadrilla Synthesis Report)

MITIGATING RISK – WELL INTEGRITY

(Adapted from J ANDERS SPE Presentation)


Well integrity should cover the lifetime of the well:

- 1. Design phase
- 2. Construction phase
- Production phase:
 Operation and
 Maintenance
- 4. Abandonment phase

Technical Authority (TA) roles and handover?

MITIGATING RISK – WI STANDARDS

API Standards

 $\mbox{\rm API}\,51\mbox{\rm R}$ – Environmental Protection for Onshore Oil and Gas Production Operation and Leases. July 2005

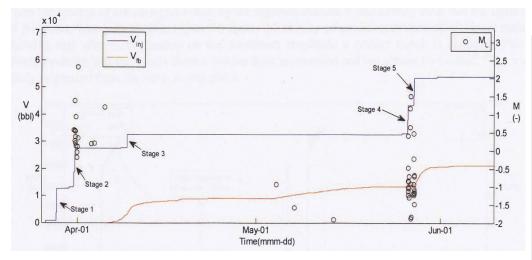
API 65 - Isolating Potential Flow Zones During Well Construction (Dec 2010)

API Guidance Documents for Hydraulic Fracturing

- API HF1 Hydraulic Fracturing Operations Well Construction and Integrity Guidelines (Oct 2009)
- API HF2 Water Management Associated with Hydraulic Fracturing (June 2010)
- API HF3 Practices for Mitigating Surface Impacts Associated with Hydraulic Fracturing (Jan 2010)

(Source NORSOK and API)

Audits and certifications are necessary for controls:


- 1. Well examiner involvement
- 2. Independent frac operations audits and certification, by specialists
- 3. Well integrity checks and audits

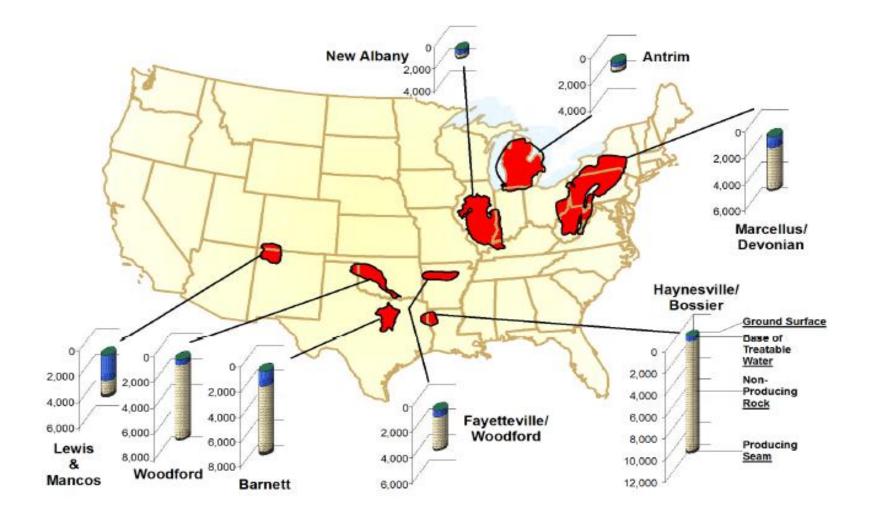
Existing construction standards (API/NORSOK/ISO) and guidelines

- 1. No need for additional regulations.
- 2. Implementation and applications needs to be monitored?
 - Regular audit by independent frac experts

INDUCED SEISMICITY – UK OVERVIEW

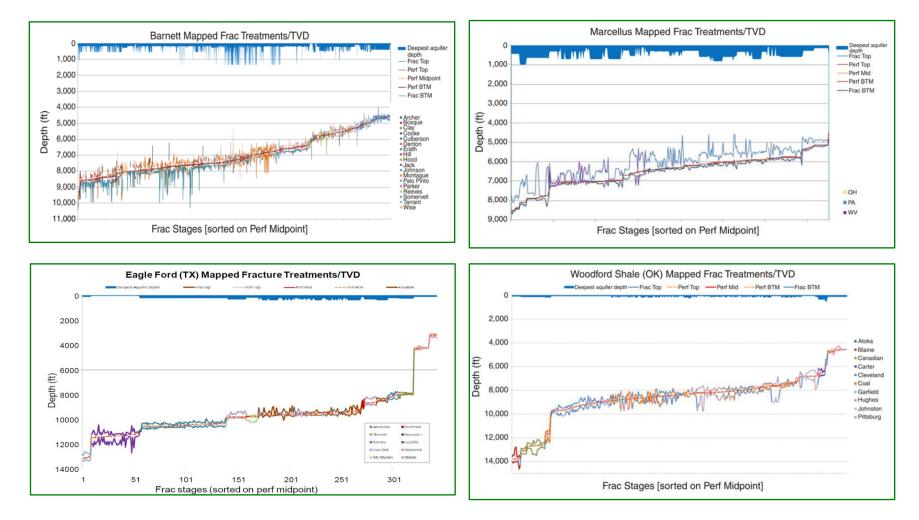
Stage I		Date	Perforations									
	Description		Depth			Length	Number	Slickwater Volume		Proppant		
Stage			Тор	Bottom								
			ft MD _{RKB}	ft MD _{FKB}	ft TVD _{SS}	ft		Gallons US	_m ³	bbls US	lbm	mton
1	DFIT	26 March 2011	8,841	8,850		9	27	34,314	130	817		
1.1	Job	28 March 2011	8,841	8,949	8,730	36	108	485,856	1,839	11,568	226,240	101
2	DFIT	30 March 2011	8,700	8,759	8,583	27	81	24,780	94	590		
2	Job	31 March 2011						593,040	2,245	14,120	262,080	117
		01 April 2011	Magnitude 2.3 seismic event Deformed casing confirmed with caliper 8480-8640ft MD (just below zone 3)									
		04 April 2011										
3	DFIT	08 April 2011	8,420	8,489	8,340	27	81	10,668	40	254		
3	Job	09 April 2011						200,634	759	4,777	116,480	52
4	DFIT	25 May 2011	8,020	8,259	8,052	27	81	21,084	80	502		
4	Job	26 May 2011						423,696	1,604	10,088	183,680	82
		27 May 2011	Magnitude 1.5 seismic event									
5	DFIT	27 May 2011	7,970	7,819	7,823	27	81	11,760	45	280		
9	Job	27 May 2011						402,780	1,525	9,590	248,640	111
6	DFIT	31 May 2011	7,670	7,789	7,666	27	81	10,290	39	245		
TOTALS							513	2,218,902	8,399	52,831	1,037,120	463

Injection volume and seismicity during treatment stages.


Earthquake activity closely correlates with stages 2 and 4.
The largest event with 2.3 M_L at 02:34 on 1/4/2011 occurred shortly after stage 2.

Earthquake activity was caused by fluid injection into a fault zone

- The fault failed repeatedly in a series of small earthquakes.
- The fault is yet to be identified.


FRACTURING & AQUIFERS

(Source Shale Gas PRIMER)

FRACTURING & AQUIFERS

(SPE 145949, Fisher and Warpinski, 2011)

SUMMARY

FRAC DEVELOPMENT BEST PRACTICES

Based on US experience:

 Formal Risk/Impact Assessment of well drilling and completion operations

- Geophysical logging
- Surface casing strings and packers/cement to protect aquifers
- Completion designed to prevent upward migration of reservoir and injected fluids
- Good cement: testing of each completion string
- Fluid storage in tanks/protected pits
- Fracture diagnostics
- Avoidance of fracturing near faults/subsurface structures
- Reuse of frac fluid
- Local water sampling
- Regular updates and frequent engagement with stakeholders

INDUCED SEISMICITY - TRAFFIC LIGHT SYSTEM

