Introduction

The North Atlantic Treaty Organization’s (NATO) warfighting edge has traditionally been anchored by the innovation and industrial capacity of the United States, but this will not be sufficient for the transatlantic community to weather today’s military and geopolitical realities. The return of true strategic competition, between nations that believe in the universal value of the free and open liberal international order and those that seek to remake it for their own benefit, has made every element of the international order a contested space—ranging from economics and information to seeking to redraw sovereign territorial borders through force. Strained by the return of industrial warfare on their borders and the need to ensure the security and territorial integrity of partners in the Middle East and Western Pacific, and faced with outdated acquisition systems and supply chains reliant on production in competitor nations, the United States and its NATO partners need new approaches, attitudes, and concepts for technology innovation and industrial production if they are to prevail on future battlefields.

Seen as the solution to every emerging military challenge, the call to innovate has been constant in recent years. Innovation is certainly going to be key to success, and some analysts have even defined the era of strategic competition in terms of an “innovation race.”¹ Too often, however, “innovation” is used as shorthand for “develop a new technology or widget.” Innovation is as much about process, concepts, implementation, and execution as it is about...
the technology itself—and it is often in these enabling functions where innovation is needed most to gain significant improvements and advantages.

Society is also going through a transition phase from hardware led to software led, which impacts how we think about technology, its development, and its implementation. This is not new, and is evident across all aspects of modern life. But because the military is more heavily hardware defined than most other sectors, and often more cautious in its evolution, it has greater implications than might be immediately apparent. One key implication is the potential for easier collaboration between allies in capability development. But for this potential to be realized, there will need to be innovation not just in technology, but in the concepts, processes, and, most importantly, attitudes that allow it to happen.

This is not to claim that hardware is no longer important. Anyone with a passing understanding of artificial intelligence (AI) and the possibilities it portends will also understand how critical the architecture of the silicon chips it runs on is, for instance. But to see how the importance between software and hardware has shifted, take the example of “network centric warfare.”2 The term du jour in the early 2000s, this concept for how war would be fought has been proven right. Yet, most militaries attempted to implement it by forcing every partner military to use the same hardware and “network” systems. More recently, modern Western militaries have begun taking a more data-centric approach, which emphasizes shared data formats rather than shared systems, and has seen a rapid improvement in implementing the concepts network-centric warfare championed.3 The hardware is still important, but the software is the defining element.

If advanced technologies are a key pillar of winning the era of strategic competition, and allies are one of the United States’ great advantages, then surely tech collaboration with allies should be a center of gravity in the US to win. Defending the Euro-Atlantic area, and securing NATO’s advantage across operational domains in a moment of unprecedented strategic competition with near-peer adversaries, will require strengthened defense and technology cooperation between the United States and its allies and industry partners across the Atlantic. To achieve this, the United States will need innovative thinking and approaches—not just for the development of technologies, but for sharing and ultimately co-producing them.

Elements of Innovation

The concept of innovation can be abstract, and there are few agreed rules or definitions for exactly how it can be achieved. Innovation can have many sources and take many forms, and occurs in every aspect of the human experience. In military terms, it has most often originated during times of conflict and out of necessity. Since the end of the Second World War and the start of the Cold War—a period of incredible innovation—technology development was driven by military and federal funding, and undertaken by a handful of centralized, traditional research organizations with a focus on government and military applications. The internet is the most commonly cited example of Department of Defense (DOD)-funded invention, having started as an Advanced Research Projects Agency project, but examples include the Global Positioning System (GPS), night vision, jet engines, and many others. This innovation was paired with experimentation of concepts and doctrine that often needed to occur in large, remote areas and involved significant infrastructure and forces.

Today, greater innovation is occurring in the commercial sector, led by a handful of technology behemoths and a vast number of decentralized start-ups funded by private capital.4 As technology becomes increasingly software driven, there is greater scope for new entrants and broader collaboration as the development environments are less constrained by geography and infrastructure. Experimentation can happen virtually and through simulation, allowing for more input from a more diverse set of participants. This is critically important, as collaboration and cross-pollination of perspectives and ideas can be powerful drivers of innovation. And while national militaries still have a key role to play in innovation and technology development—for instance, through programs like the Defense Advanced Research Projects Agency (DARPA) and NATO’s Defence Innovation Accelerator for the North Atlantic (DIANA)—many of the

---

The most important capabilities are dual use, with the rapid iteration and evolution in the commercial field outpacing those of government-driven programs.

Technology will always play a key role in innovation, as it can enable us to do new things we couldn’t do before or provide new ways to complete existing tasks more efficiently. But innovation does not always require new technologies, and it is not always characterized by a sudden or high-profile shift. Even small improvements, new ways of doing things, or applying existing ideas in new contexts can generate significant innovation. In other cases, new processes or methods that enable something to occur, or encourage greater creativity in execution, can be considered innovative. And in the government sector, where departments of defense and militaries reside, these sometimes boring and arcane improvements can be the most significant. The problems and constraints created by the US International Traffic in Arms Regulations (ITAR) are an obvious area where even small changes could have a dra-

5 The shift from hierarchical approaches to giving orders to “mission command”-style leadership is the best example of this; the implementation of “predictive-maintenance” approaches to equipment management is another. Even procurement processes like creating Other Transaction Authorities (OTAs), which allow DOD engagement with nontraditional suppliers for prototype projects. At a more granular and niche level, new processes such as using Significant Security Cooperation Initiatives (SSCI) to globally prioritize security-cooperation activities to create a more coherent approach to military aid can have multiple benefits.
matics impact on cross-border innovation collaboration. An adaptation in attitude and mindset can be the most crucial, if it means that a new approach can be adopted where it would not previously have been.

Therefore, innovation can be defined as the successful implementation of new ideas, methods, or products that create value. It involves challenging the status quo, thinking creatively, and taking calculated risks to achieve positive outcomes. Fresh perspectives and unconventional thinking foster innovation by questioning existing assumptions and approaches. These new concepts can disrupt traditional methods and spark the creation of entirely new fields of study or application, in part by fusing seemingly unrelated fields. This is where open societies have an advantage, as they embrace diversity of experience and perspective. Leveraging niche expertise and many different cultural, geopolitical, educational, and experiential perspectives that exist within the United States' robust network opens new opportunities. Closer cooperation across design, experimentation, and implementation of cutting-edge technologies and approaches help the United States not only strengthen connectivity with allies and industry partners, but share the burden of innovation investment while gaining insights and capabilities for its own forces.

Deeper transatlantic defense cooperation has the potential to unlock new advantages needed to ensure the United States and its allies retain their strategic edge over near-peer adversaries in a future conflict. But cashing in on these opportunities requires an understanding of the forms innovation takes, what is needed to best harness them, and a willingness within the traditional US defense establishment to reform procurement, contracting, and data-sharing mechanisms in ways that make it easier for trusted allies and industry partners to do business with the United States. Broadly, we can think of the forms of innovation as new concepts, new technologies, and new attitudes. New technologies become the tools to implement fresh concepts brought to life by a shift in attitudes. Fostering innovation requires more than just the latest technology. It necessitates a culture that embraces new ideas, encourages experimentation, and fosters collaboration—allowing all three ingredients to work together in a powerful synergy, shaping a more innovative and progressive future.

New Concepts: Innovation in Adoption and Adaption

Experimentation is a vital component of innovation, and forces in active combat will always seek new ways to gain an advantage over enemy combatants. Their lives depend on it. It is not surprising that we have seen a wide range of innovations emerge from brave Ukrainians defending themselves in the face of Russia's war of aggression. As this is the first conventional conflict between two modern military forces in decades, there will be many attempts to extrapolate insights about the nature of modern and future warfare from successful technologies and tactics, techniques, and procedures (TTPs) implemented in Ukraine. But while the obvious lessons to learn might come from the extensive use of small commercial drones for precision strikes, this has been occurring at a smaller scale in Middle East since at least 2017, and is not particularly new or radical. What the Ukrainians have done, with great success, is integrate this drone capability effectively into combined-arms operations, and with the scale, sophistication, and diversity of platform capable of changing the nature of the battlespace.

The more interesting lesson to learn, however, is the way Ukraine has leveraged the drones to amplify their effect...
through domestically created software. For years, analysts have predicted a transition from hardware-focused warfare to a software-defined ecosystem, mirroring similar transitions in civilian and commercial sectors. In the West, there is a slow process of moving from system- and platform-centric reference architectures for military systems to software products that enable larger platforms. Companies like Anduril and Palantir are transforming the traditional procurement pathways, but this will be a slow and iterative process. Ukraine is showing how it can be accelerated.¹⁰

Local software developers have created their own software solutions, like the Kropyva artillery targeting and blue-force tracking combat-control app; Delta, a cloud-based, comprehensive situational-awareness and battlefield-management system; and a chatbot, often integrated into the widely used Diia app, to crowdsource intelligence from the general population about enemy movements and military capabilities.¹¹

The development and deployment of these software-enabled capabilities share several key characteristics. They

---


often include aspects of private-public partnership; integrate elements of crowdsourcing and support from the wider populations; automate key features; and mimic more sophisticated commercial services. Moreover, one of their key contributions is the ability to modernize and integrate old and outdated equipment with more modern systems and tactics, such as Ukraine’s legacy, Soviet-originated anti-aircraft systems.\(^\text{12}\)

There are wider lessons to be learned from the development and deployment of such systems. A country facing an existential threat has an inherently different risk profile than a country in a state of peace, and a smaller nation will usually have less bureaucracy than a larger one. Nonetheless, private-public collaboration and the ability and willingness to quickly adapt, along with more flexible and streamlined procurement processes, show what can be possible. Moreover, this demonstrates how software can overcome the limitations of hardware—particularly dated, legacy systems—which will be vital as the United States seeks to modernize the forces of allies and partners around the world as efficiently as possible. The benefit cannot be understated. While all allies and partners strengthen the strategic value of the network, many may struggle to meaningfully contribute in a high-end contingency due to the capabilities of their legacy systems. Leveraging the expertise Ukraine has built in creating and effectively utilizing an ecosystem of partner security cooperation increases the second- and third-order value of past US security-cooperation investments, while increasing the deterrent value of its core strategic asset and increasing stability and security for all.

**New Technologies: Exported Concepts to Returned Capabilities**

Alliances provide unique opportunities for innovation through the exportation and application of concepts—opening new doors for innovation in response to countries’ unique geopolitical needs and circumstances, with multiplying effects for others in the network. Australia’s Ghost Bat program is a fascinating example of this type of innovation across the alliance ecosystem. Boeing’s MQ-28 Ghost Bat is “a pathfinder for the integration of autonomous systems and artificial intelligence to create smart human-machine teams” that resulted from collaboration between the Australian Air Force and Boeing.\(^\text{13}\) The Ghost Bat represents a new way of conducting air-combat operations, in which human-flown aircraft like the F-35 will be able to seamlessly coordinate and cooperate with autonomous systems, in a concept known as the “loyal wingman.”\(^\text{14}\)

The design of the Ghost Bat was so successful that it has been expanded by $250 million to build a Block 2 version, spawned an underwater unmanned-vehicle program called the Ghost Shark, and is now being exported to the United States for testing.\(^\text{15}\) What is more interesting is that the collaboration involves a US allied government, is led by a US defense manufacturer, and manifests a US-developed concept that, despite several conceptual iterations, is yet to be fully developed in the United States itself.\(^\text{16}\)

A simplistic analysis of this case study could point to streamlined procurement processes and reduced bureaucracy in non-US governments, but this is not necessarily the case. The more useful framing for thinking about such a program is that every nation has a unique set of national circumstances—from geography and economy to national objectives and military approaches. As such, there will be varying requirements and incentives for military designs and programmatic commitments. Rather than seeking to cover all possibilities, or even to replicate others’ experiences, streamlining the ability to leverage that experience and context to flow concepts, manufacturing, and techniques back and forth between nations means the United


States can benefit from the diversity of its vast partner network, while sharing the burden of development costs.

It is the flow of concepts, skills, technology, and prototypes between partners in complex innovation ecosystems that reveals the possibilities for operationalizing ideas to capabilities. And while Ukraine demonstrates that makeshift and improvised solutions in real-time combat can provide paths to innovation, the Ghost Bat program was a long-term, planned procurement process, in which an ally’s pursuit of capabilities to meet its own needs (in Australia’s case, the need to amplify the effect of a small population across vast territory through high-end technology and capabilities) offers an opportunity to advance solutions the United States can leverage to achieve its own capabilities goals.

Partnerships such as the US National Technological and Industrial Base (NTIB) and AUKUS trilateral defense partnership have created vehicles for cooperation between the United States and some of its closest historical allies—which can drive collaboration like the Ghost Bat program. While effective, the NTIB and AUKUS only tap into a small subset of countries, excluding the advanced capabilities, platforms, and expertise spread across the United States’ twenty-nine

17 The NTIB, for example, supports security and defense objectives by “supplying military operations; conducting advanced R&D and systems development to ensure technological superiority of the US Armed Forces; securing reliable sources of critical materials; and developing industrial preparedness to support operations in wartime or during a national emergency.” H. M. Peter, “The National Technology and Industrial Base,” FAS Project on Government Secrecy, 2023, https://sgp.fas.org/crs/natsec/IF11311.pdf
other NATO allies. Bringing new partners into the US orbit via an AUKUS+ framework—or extending the NTIB to other close transatlantic allies with cutting-edge expertise and capabilities, like Sweden, Italy, and the Netherlands—would open new acquisition pathways and facilitate the enhanced cooperative development, experimentation, and industrial co-production needed for the United States to outpace competitors in today’s threat environment. 18

Agreements like AUKUS should not be seen as ends in themselves, but pathfinders to create new and more streamlined channels for tech collaboration and cooperation.

New Attitudes: Niche Innovations

Another way to leverage allied innovation is through adapting and adopting niche capabilities that allies have naturally developed to meet their own needs, built on the native talents and expertise of their own populations. Some of the easiest and most critical of these tools are in the cyber and information domains, though across allied countries in NATO, for instance, there are numerous small drone, satellite communications, and ballistic-missile technologies that could be highly useful across the US-aligned alliance

---

ecosystem. For instance, countries such as Estonia and the Netherlands are at the forefront in areas such as misinformation detection, cyber-threat intelligence, network security, and incident response. Co-production will also be vital for NATO to meet the challenges of this era of renewed strategic competition, and the value of it—particularly in niche advanced capabilities—can be seen through the ramping up of production for items such as first-person view (FPV) drones in support of Ukraine’s defense. 19

The value of leveraging native conditions that can be leveraged by the wider alliance can be seen in countries like the Netherlands, where a high concentration of high-tech companies, knowledge economies, and widespread public-private collaborations has resulted in niche capabilities in ballistic-missile defense, sensor systems, and space, communications, and quantum technologies. 20 Its innovation hub at Brainport Eindhoven now also hosts a NATO DIANA accelerator cell to further leverage its successful investments and public-private collaborations, and its success in areas such as the launching of micro satellites has drawn attention from potential adversaries. 21 More importantly, they are proactive in seeking to collaborate and disseminate natively developed insights, showing how important the attitude toward innovation must come from both sides of any collaboration. 22

In many cases, knowledge-based innovation should be easy to export and share. But it cannot occur without recognition of the expertise of the source country and a genuine desire to learn from and adopt the lessons being generated. This requires a shift in attitude toward the value of the innovation itself, and a willingness to learn from others’ experiences. At a more basic level, it requires appropriate information-sharing agreements to be in place, which also requires a degree of trust between parties and a dedication to reforming the bureaucratic processes needed to enable them. While initiatives like the NTIB have arguably failed to live up to their potential, their value in shaping attitudes and focusing attention on the need for collaboration and sharing of data and technologies could be as valuable as any other element. 23 For this reason alone, the United States should consider expanding the effort to more NATO nations, with the future intent of also bringing them into an expanded AUKUS+ framework. 24 Agreements of this type are a perfect example of the process innovation needed in addition to the development of technologies, because without process and regulatory reform—not to mention increased data sharing—and the attitude required to enable it, technological collaboration will not be able to occur in a meaningful way.

Successful innovation requires a shift in attitude across a number of issues, including willingness to experiment, increased risk appetite, open-mindedness, and an embracing of inevitable failures as a path to learning. But the need to recognize the value of diverse perspectives on addressing challenges—and have the willingness to enable the sharing of those perspectives and the data that support them—is vital to exploring untrodden paths and fostering a culture of continuous improvement. There are likely few across the US agencies, military, or defense industrial base who would disagree in principle. But for this attitude to have a material effect, there must be a shift from passive agreement to proactive measures to enable it.

Conclusions

If advanced technologies are a key pillar of winning the era of strategic competition, and allies are one of the United States’ great advantages, then surely tech collaboration with allies should be a center of gravity of US means to win. In a race of innovation, harnessing the perspectives, experiences, and extant investment of a diverse network of partners is a huge strategic advantage for the United States and NATO. But it will be a squandered advantage if appropriate attitudes, concepts, and processes are not

in place to amplify development and harness the resulting capabilities. There are already a number of programs that seek to do this, and they should be supported, studied, and replicated. But more should be done to harness the new concepts, technologies, and niche capabilities that the partner ecosystem is generating, particularly within NATO member states—either through expansion of programs such as the NTIB, AUKUS, and DIANA, or by using them as templates to reform and evolve other bilateral and multilateral frameworks. Doing so will be imperative if the transatlantic Alliance is not only to prevail in this era of strategic competition, but retain sufficient military advantage needed to ensure security and stability for a free and open international system.

About the Author

John T. Watts is a nonresident senior fellow in the Forward Defense practice of the Atlantic Council’s Scowcroft Center for Strategy and Security and head of US federal coordination at Cocoon Data.

Acknowledgments

This publication has been produced in cooperation with the Ministry of Defence of the Kingdom of the Netherlands under the auspices of a project on transatlantic defense innovation.
CHAIRMAN
*John F.W. Rogers

EXECUTIVE CHAIRMAN EMERITUS
*James L. Jones

PRESIDENT AND CEO
*Frederick Kempe

EXECUTIVE VICE CHAIRS
*Adrienne Arsht
*Stephen J. Hadley

TRAESURER
*George Lund

DIRECTORS
Stephen Achilles
Elliot Ackerman
*Gina F. Adams
Timothy D. Adams
*Michael Andersson
Alain Bejjani
Colleen Bell
Sarah E. Beshar
Stephen Biegun
Linden P. Blue
Brad Bondi
John Bonsell
Philip M. Breedlove
David L. Caplan
Samantha A. Carl-Yoder
*Teresa Carlson
*James E. Cartwright
John E. Chapoton
Ahmed Charai
Melanie Chen
Michael Chertoff
*George Chomsky
Wesley K. Clark
*Helima Croft
Ankit N. Desai
Dario Deste
*Lawrence Di Rita
*Paula J. Dobriansky
Joseph F. Dunford, Jr.
Richard Edelman
Stuart E. Eizenstat
Mark T. Esper
Christopher W.K. Fetzer
*Michael Fisch
Alan H. Fleischmann
Jendayi E. Frazer
*Meg Gentle

Thomas H. Glocer
John B. Goodman
Sherri W. Goodman
Marcel Grinstein
Jareslaw Grzesiak
Murathan Gunal
Michael V. Hayden
Tim Holt
*Carl V. Hopkins
Kay Bailey Hutchison
Ian Ihnatowycz
Mark Isakowitz
Wolfgang F. Ischinger
Deborah Lee James
*Joia M. Johnson
*Safi Kalo
Andre Kelleners
Brian L. Kelly
John E. Klein
*C. Jeffrey Knittel
Joseph Konzelmann
Keith J. Krach
Franklin D. Kramer
Laura Lane
Almar Latour
Yann Le Pallec
Ian M. Lodal
Douglas Lute
Jane Holl Lute
William J. Lynn
Mark Machin
Marco Margheri
Michael Margolis
Chris Marlin
William Marron
Gerardo Mato
Erin McGrain
John M. McHugh
*Judith A. Miller
Dariusz Mioduski
*Richard Morningstar
Georgette Mosbacher
Majida Mourad
Virginia A. Mulberger
Mary Claire Murphy
Julia Nesheiwat
Edward J. Newberry
Franco Nuschese
Joseph S. Nye
*Ahmet M. Ören
Ana I. Palacio
*Costas Pantazopoulos
Alan Pellegrini
David H. Petraeus
*Lisa Pollina
Daniel B. Poneman
Robert Portman
*Dina H. Powell
McCormick
Michael Punke
Ashraf Qazi
Thomas J. Ridge
Gary Rieschel
Charles O. Rossotti
Harry Sachinis
C. Michael Scaparrotti
Ivan A. Schlag
Rajiv Shah
Wendy R. Sherman
Gregg Sherrill
Jeff Shockey
Kris Singh
Varun Sivaram
Walter Slocombe
Christopher Smith
Clifford M. Sobel
Michael S. Steele
Richard J.A. Steele
Mary Streit
Nader Tavakoli
*Gil Tenzer
*Frances F. Townsend
Clyde C. Tuggle
Francesco G. Valente
Melanne Verveer
Tyno Voelkel
Michael F. Walsh
Ronald Weiser
*Al Williams
Ben Wilson
Maciej Witucki
Neal S. Wolin
Tod D. Wolters
*Jenny Wood
Guang Yang
Mary C. Yates
Mary S. Zakheim

HONORARY DIRECTORS
James A. Baker, III
Robert M. Gates
James N. Mattis
Michael G. Mullen
Leon E. Panetta
William J. Perry
Condoleezza Rice
Horst Teltschik
William H. Webster

*Executive Committee Members

List as of March 27, 2024